Mösta et al. recently published a break-through study on magnetoturbulence in rapidly rotating stellar collapse in Nature. They show that magnetohydrodynamic turbulence in the shear layer around a newly born proto-neutron star kicks off a highly efficient dynamo process that creates large-scale, ordered magnetar-strength (> 10^15 G) magnetic field. This field is strong enough to power hyperenergetic type Ic-bl explosions, a rare but extreme subclass of core-collapse supernovae, that are 10x more energetic than the average garden-variety supernovae and also make up all supernovae connected to long gamma-ray bursts. In addition, their simulations provide a first glimpse on a formation scenario for magnetars, very strongly magnetized neutron stars, that are left behind in these explosions.
The source code used to run the simulations and the initial data are available here. They have also created 3D visualizations of the magnetic field amplification in their simulations, embedded below.