Table 1: Model summary for Ott et al., PRL 96, 201102 (2006). Note that the quantitative results differ slightly from those published. This is due to improved analysis techniques. Δt is the amount of postbounce time covered in each model, $h_{+,\text{max}}$ is the maximum axisymmetric gravitational wave strain amplitude scaled to 10 kpc distance, $h_{\text{char,max}}$ is the maximum of the characteristic strain spectrum (Flanagan & Hughes, PRD 57, 4535 (1998)) and f_{peak} is the frequency at which $h_{\text{char,max}}$ is located. E_{GW} is the total energy radiated in gravitational waves. The gravitational wave emission data for fluid matter and neutrino sources are given separately. The GW emission from anisotropic neutrino emission was computed in a postprocessing step and only coarse time resolution was available. The extraction radius was 100 km. The results of the fourier analysis of these data should be considered with this in mind.

		Fluid				Neutrinos			
Model	Δt	$ h_{+,\max} $	h _{char.max}	f_{peak}	$E_{\rm GW}$	$ h_{+,\max} $	$h_{\rm char.max}$	f_{peak}	$E_{\rm GW}$
		at 10 kpc	at 10 kpc	1		at 10 kpc	at 10 kpc	1	
	(ms)	(10^{-21})	(10^{-21})	(Hz)	$(10^{-7} \ { m M}_{\odot} \ { m c}^2)$	(10^{-22})	(10^{-22})	(Hz)	$(10^{-13} \ { m M}_{\odot} \ { m c}^2)$
$s11WW M_{\odot}$	1045	1.6	22.8	654	0.16	3.16	0.76	$\sim 0-5$	0.35
$s25WW M_{\odot}$	1110	50.0	2514.3	937	824.28	22.20	7.51	\sim 0-5	17.56
m15b6 M_{\odot}	927	1.0	19.3	660	0.14	3.22	0.93	\sim 0–5	0.76