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Abstract

We present the SuperNova Explosion Code (SNEC), an open-source Lagrangian code that
solves for the hydrodynamics and equilibrium-diffusion radiation transport in the expand-
ing envelopes of core-collapse supernovae (CCSNe), taking into account recombination effects
and the presence of radioactive nickel. Given a model of the progenitor star and an explosion
energy, the code generates the bolometric light curve, as well as the light curves in different
observed wavelength bands in the blackbody approximation.

SNEC is released as open source and is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. The copyright holders are Viktoriya
Morozova, Christian D. Ott, and Anthony L. Piro. When using SNEC, please cite the SNEC
paper, Morozova et al. 2015, in preparation, arXiv:1504.XXXXX and the SNEC code webpage,
http://stellarcollapse.org/SNEC.

The following contributions to SNEC are excluded from the above license and copyright and
covered by their own licenses and copyrights:

SNEC contains elements of both the Timmes EOS and the Saha ionization solver provided
by Frank Timmes (http://cococubed.asu.edu). We distribute this code with SNEC with
permission of Frank Timmes.

We distribute with SNEC opacity data from the OPAL opacity project (http://
opalopacity.llnl.gov/) with permission of Carlos Iglesias.

We distribute with SNEC opacity data by Ferguson et al. 2005, ApJ 623:585 available from
http://webs.wichita.edu/physics/opacity/ and with permission of Jason Ferguson.
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1 Basic Equations

SNEC solves the equations of Langrangian hydrodynamics in spherical symmetry (using artificial
visosity, e.g., [1, 2]), supplement with radiative diffusion (e.g. [3, 4]).

SNEC implements the mass conservation equation,

∂r
∂m

=
1

4πr2ρ
, (1)

the energy conservation equation,

∂ε

∂t
=

P
ρ

∂ ln ρ

∂t
− 4πr2Q

∂v
∂m
− ∂L

∂m
+ εNi , (2)

and the momentum conservation equation,

∂v
∂t

= −Gm
r2 − 4πr2 ∂P

∂m
− 4π

∂(r2Q)

∂m
. (3)

Here m =
∫ r

0 4πr′2ρ(r′)dr′ is the mass coordinate, r is the radius, t is the time, ρ is the mass density,
ε is the specific internal energy (energy per unit mass), P is the pressure, v = ∂r/∂t is the velocity
of the matter, Q is the artificial viscosity, εNi is the specific energy deposited due to the radioactive
decay of 56Ni (see §4), and G is the gravitational constant. The radiative luminosity L is defined as

L = −(4πr2)2 λac
3κ

∂T4

∂m
, (4)

where a is the radiation constant, c is the speed of light, λ is the flux-limiter and κ is the Rosseland
mean opacity (see §3.3). The expression for flux-limiter is chosen based on the prescription of [5]
(see also [6]) as1

λ =
6 + 3R

6 + 3R + R2 , (5)

where

R =
4πr2

κT4

∣∣∣∣∂T4

∂m

∣∣∣∣ . (6)

The inclusion of the radiation diffusion term (∂L/∂m in the energy equation) is optional, i.e.,
SNEC can be run either in pure hydro or in radiation-hydro mode. The pure hydro solver is im-
plemented in hydro.F90, while hydro rad.F90 contains the combined diffusion and hydro solver.

2 Basic Control and Initial Setup

2.1 The parameters file

Much of what SNEC does can be controlled via settings read in by input parser.F90 from a text
file called parameters in the code’s main directory (most of the parameters have self-explanatory

1Note, that our Eq. 5 is 3 times larger than the original expression of [5], and this is compensated by the factor 3 in
the denominator of Eq. 4.
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names), but using grep with the parameter of interest as an argument on the Fortran files in the
src directory can be useful at times to understand what a given parameter really does.

The parameter outdir sets the name of the output directory, which must be created by the
user in the main directory before running the code (if the output directory is absent, the code will
return a corresponding error message). The user needs to remember that with every new run, SNEC
deletes the previous content of this directory. The parameter profile name sets the name of the pro-
genitor profile file that is read in by read profile.F90 and mapped to SNEC’s grid. SNEC uses
the .short format whose details can be inferred from read profile.F90. This is the same for-
mat used by the open-source code GR1D [7, 8]. This profile just contains the basic hydrodynamics
and thermodynamics of the star. The parameter comp profile name sets the name of the profile
file containing detailed compositional information for the progenitor. These data are read and
mapped by read profile compositions.F90 from which the detailed content of the isotope pro-
file file can be inferred (see also §2.2.2 for more details on how the profile data are read in and
mapped). We provide a number of example progenitor profiles in the profile directory of the
main SNEC code directory. There is also a README.txt file describing them in some more detail.

The parameters responsible for the type of explosion and its setup are described in §2.2.4.
The parameter imax sets the number of grid cells to be used in the simulation (see §2.2.1 for a
description of the grid setup). The parameter radiation, if set to 1, turns on radiative diffusion
(2). The equation of state (EOS) to be used is specified by parameter eoskey (see §5). Parameter
Ni switch activates heating by radioactive nickel (see §2.2.2 and §4). Recombination is traced
for the first saha ncomps isotopes of the composition profile, while saha_ncomps=0 implies full
ionization. The mechanism of boxcar_smoothing is discussed in §2.2.3. The setup of the opacity
floor (see §3.3) is controlled by parameters opacity_floor_envelope and opacity_floor_core.

2.2 Setup of the Explosion

subroutine problem (in problem.F90) is one of the central routines of the code. It controls the
initial setup of the explosion based on the parameters provided by user. It controls the allocation
of memory, initialization of variables, reading of the progenitor star profile, grid setup, and set up
of the explosion type.

2.2.1 Grid Setup

SNEC’s numerical grid is divided into imax computational cells. Quantities with subscript i live at
the inner edge of computational cell i (such as velocity v, luminosity L, flux-limiter λ). Quantities
with subscript i + 1/2 live at the center (in mass coordinate) of cell i (such as specific internal
energy ε, pressure P, density ρ, temperature T, opacity κ, and artificial viscosity Q). The physical
surface of the simulation domain is located at the inner edge of the imax-th cell.

SNEC currently has two options for the gridding:

• uniform gridding in mass,

• customized gridding in mass based on a file provided by the user (option “from file by mass”
for gridding in the parameters file).

In order to use the second option, the user must provide a file with name GridPattern.dat in
the main directory of the code, containing a column of imax consecutive real numbers in the range
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[0, 1]. The subroutine grid in file grid.F90 will use it as a pattern for distributing the total mass
among the computational cells. Typically, one would like to have grid setup with better resolution
of the inner regions (where the bomb is placed) and the surface region of the stellar model (where
the photosphere will be initially).

• The mass coordinate mi is the mass enclosed by the inner boundary of cell i. In the code it is
given by the array mass.

• For the simulations of core-collapse supernova light curves, one generally needs to have the
inner boundary not at the m1 = 0, but at some mass M > 0 to account for the collapse of the
core to a protoneutron star. The parameter mass_excised gives the mass coordinate of the in-
ner boundary (m1) in solar masses (typically we use 1.4 M�), provided mass_excision = 1.
Otherwise, the inner boundary of the grid coincides with the inner boundary of the progen-
itor star model in profile_name.

• The mass contained in each cell is

∆mi+1/2 = mi+1 −mi , (7)

for i = 1, 2, ..., imax− 1. ∆mi+1/2 is stored in array delta mass. At the outer boundary, we
set ∆mimax+1/2 = ∆mimax−1/2.

• The mass enclosed by the center of each cell is equal to

mi+1/2 = mi +
1
2

∆mi+1/2 , (8)

for 1, 2, ..., imax. mi+1/2 is stored in array cmass.

• The mass difference between two consecutive cell centers is given by

∆mi = mi+1/2 −mi−1/2 =
1
2
(∆mi−1/2 + ∆mi+1/2) , (9)

for i = 2, 3, ..., imax. ∆mi is stored in array delta cmass.

2.2.2 Mapping in Progenitor Star Data

In order to explode a star and generate a light curve, SNEC needs information about the structure
and chemical composition of the preexplosion star. These data are read in from two separate files,
specified as strings in the parameter file under profile name and comp profile name.

The file specified in profile name has the common .short format (e.g., used also by the open-
source code GR1D [7, 8]). It’s format is:

• First line: number of cells/rows in the profile (integer).

• Subsequent lines:

cell index mass radius temperature density velocity Ye Omega
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All units are in CGS, zone index is an integer, the rest of the variables are real numbers and
self-explanatory.

The file whose file name must be set in comp profile name should contain compositional in-
formation. Its format is specific to SNEC and described in the following:

• First line: ncells nisotopes

where ncells is the number of cells/rows in the profile file and nisotopes is the number of
isotopes present in the compositional data.

• Second line: The mass numbers of all isotopes (space-separated real numbers).

• Third line: The charge numbers of all isotopes (space-separated real numbers)

• Subsequent lines:

cell mass cell radius (Mass fraction of isotope i) for i=1,nisotopes

The subroutine read profile (in source file read profile.F90) and subroutine read pro-

file compositions (in source file read profile compositions.F90) read in the progenitor pro-
file data and map them on the computational grid using linear interpolation. Mass coordinates
are mapped to the inner edges of the computational cells, while temperature, density, velocity and
mass fractions are mapped to the cell centers. The specific internal energy and the pressure are
found at cell centers by calling the EOS with density, temperature, and compositional information.
The outer boundary data (at the center of the last computational cell) are set as described in §3.4.
For consistency, SNEC recalculates the radial coordinates from mass coordinates and cell densities
in subroutine integrate radius initial (in read profile.F90).

The present version of SNEC does not include a nuclear reaction network, which would al-
low the explosion to self-consistently generate radioactive 56Ni (albeit in spherically-symmetric
setting). 56Ni is the crucial ingredient that powers the lightcurves of Type I SNe and the late-
lightcurves of Type II SNe.

SNEC allows the user to introduce a desired amount of 56Ni by hand. For this to work, the
composition profile must have a column for the 56Ni isotope (Z = 28, A = 56), even if that col-
umn is empty in the original progenitor star model. SNEC then uniformly distributes the amount
of 56Ni given by the parameter Ni mass between the inner boundary (m1) and a chosen outer
Ni boundary mass (in the parameters file). After this procedure, the mass fractions are renormal-
ized to one at fixed 56Ni mass fraction. The optional boxcar averaging (see next section §2.2.3)
smoothens the often sharp compositional gradients of the progenitor profile to emulate mixing
during the explosion.

2.2.3 Initial Smoothing of the Compositional Profile

The subroutine boxcar is called from the read profile compositions subroutine. It smoothes
the composition profile of the progenitor star. The actual mixing of the chemical isotopes in super-
novae is expected to be a result of Rayleigh-Taylor and Richtmyer-Meshkov instabilities, occuring
during the propagation of the explosion shock wave through the star. These instabilities can be ac-
curately modeled only in high-resolution three-dimensional simulations that fare beyond SNEC’s
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present scope. In order to mimic the mixing in the eject in spherically-symmetric explosions mod-
eled with SNEC, we use the ’boxcar’ averaging.

The nominal width (in mass coordinate) of the boxcar is defined by the hardcoded parameter
boxcar nominal mass in boxcar.F90 (0.4 M� is the current default). Starting from the first grid
point, the boxcar is moved outwards cell-by-cell, and averaging is performed over all cells con-
tained within the boxcar. Since (in most scenarios) the discretization will be non-uniform in mass,
one cannot expect the nominal mass of the boxcar to be precisely contained within an integer num-
ber of cells. Due to this, at each shift of the boxcar outwards from a cell i (at the boxcar’s inner),
the algorithm finds the minimum number of subsequent (j > i) cells that contains the nominal
mass, and then averages between them. The actual width of the boxcar is therefore equal to

∆M =
lmax

∑
lmin

∆ml , (10)

where l = lmin, ..., lmax are the indices of the mass bins ∆ml inside the boxcar (SNEC stores ∆M in
variable boxcar actual mass; boxcar_actual_mass ≥ boxcar_nominal_mass). The total mass of
the k-th isotope in the boxcar is equal to

∆Mk =
lmax

∑
lmin

Xold
l,k ∆ml , (11)

where Xold
l,k are the original mass fractions of the element in cells l = lmin, ..., lmax.

The new, averaged mass fractions within the boxcar are

Xnew
l,k =

∆Mk

∆M
, l = lmin, ..., lmax . (12)

Mixing in this way conserves the mass in a given isotope within the boxcar:

lmax

∑
lmin

Xnew
l,k ∆ml =

∆Mk

∆M

lmax

∑
lmin

∆ml = ∆Mk , (13)

and ensures that the mass fractions sum to unity in every cell,

∑
k

Xnew
l,k =

(
∑

k
∆Mk

)
/∆M = 1 . (14)

SNEC repeats the averaging procedure until a desired degree of smoothness is reached. We
currently use four sweeps of averaging in SNEC. The number of boxcar sweeps is hardcoded in
boxcar.F90 in parameter number iterations.

2.2.4 Explosion Type

SNEC is set up for thermal bomb (initial data = “Thermal Bomb”) and piston-driven (ini-
tial data = “Piston Explosion”) explosions.
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In the case of a piston-driven explosion, the first two computational cells of the profile are
boosted outwards with velocity piston vel (in cm s−1) for a time interval deliminated by param-
eters (set in file parameters) piston tstart and piston tend (both in units of seconds). In the
piston-driven case it is not straightforward to compute a priori the exact energy given to the ex-
ploding star. If one aims for a specific explosion energy, currently the only way to arrive there is to
do this iteratively by computing an explosion to free expansion and reading of the final explosion
energy from the output provided in file conservation.dat in the output directory.

The format of conservation.dat in the present version of SNEC is as follows:

time Egrav Eint Ekin Etot EtotmInt

where Egrav is the (negative) gravitational energy, Eint is the internal energy, Ekin is the kinetic
energy, Etot = Egrav + Eint + Ekin and EtotmInt = Etot - Eint. SNEC presently does not
account for energy lost to photons from the photosphere.

In the case of a thermal-bomb driven explosion, the injected total bomb energy Etot (stored
by SNEC in variable bomb total energy) is determined by the difference between the total initial
energy (internal + gravitational + kinetic) and the (user-supplied) sought energy of the explo-
sion (mostly kinetic, but some thermal, but not including energy radiated away in photons). The
initial energy is calculated by subroutine conservation compute energies in source file conser-

vation.F90. The sought-after final energy must be specified by the user in parameter final ener-

gy in the parameters file.

The total energy of the bomb Etot is injected in the model with exponential fall off both in time
and mass coordinate. The parameters bomb_tstart and bomb_tend define the start and ending
time of energy injection, in the following, we will refer to them as tb

start and tb
end, respectively.

The integer parameter bomb_start_point defines the inner-boundary computational cell of the
bomb (which we call mb

start) and the parameter bomb_mass_spread gives the extent of the bomb in
mass coordinate (in M�), which is the difference mb

end −mb
start. Given these parameters, SNEC (in

problem.F90) finds the number of grid points over which the thermal bomb is spread and writes
this information out into the file info.dat int he output directory.

We chose the energy per unit time injected into the star to be given by

Pb(t) = d′e−c′t . (15)

If we require that the ratio Pbomb(tb
start)/Pbomb(tb

end) = Rt, where Rt is set by the hard-coded pa-
rameter ratio time in source file bomb profile.F90, then we find

c′ =
ln Rt

(tb
end − tb

start)
, d′ =

c′Etot

e−c′tb
start − e−c′tb

end
. (16)

We choose the energy injected per unit time and per mass of the i-th cell to be of the form

Pb
m,i(mi) = b′e−a′mi . (17)

If we impose the condition that the ratio Pb
m,i(m

b
start)/Pb

m,i(m
b
end) = Rm, where Rm is set by the

hard-coded parameter ratio mass in source file bomb profile.F90, then we obtain

a′ =
ln Rm

mb
end −mb

start
, b′ =

d′e−c′t

∑
i

e−a′mi ∆mi+1/2
, (18)
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where the summation in the expression for b′ is performed over the cells that comprise the thermal
bomb. Note that in order to find d′ we perform an integration assuming a continuous time coordi-
nate in Eq. 16. This is justified, since the timestep (at the start of the calculation) will be very small
compared to the duration of energy injection by the bomb. Individual cell masses, however, will
generally not be sufficiently small for a continuum approximation, so we use a sum over discrete
mass cells in Eq. 18.

At the evolution equation level, the thermal bomb power (Eq. 17) is added to the right-hand
side of Eq. (2) for the time interval [bomb tstart,bomb tend].

3 Finite-Difference Form and Evolution of the Equations

In this section, we present SNEC’s numerical scheme for the implementation of Eqs. 1–3. We
present the finite-difference equations in the order they are executed in hydro rad.F90. The
SNEC’s hydrodynamics scheme is based on Mezzacappa & Bruenn 1993 [2] and was originally
implemented in the pure-hydro version of SNEC, the blcode, which is also available from http:

//stellarcollapse.org/SNEC. SNEC’s hydro.F90 is essentially blcode’s hydrodynamics solver.
In pure-hydro mode, SNEC still computes the luminosity of the radiation emitted from the explo-
sion, but there is no radiation-matter coupling.

The velocity is staggered in time and kept at half timesteps (n+ 1/2, indicated as a superscript).
This is a way of making the evolution second-order accurate in time (see, e.g., [2, 9]). The update
of the velocity at the inner edge of cell i at time n + 1/2 is given by

vn+1/2
i = vn−1/2

i − ∆tv
Gmi

(rn
i )

2 − ∆tv4π(rn
i )

2 Pn
i+1/2 − Pn

i−1/2

∆mi

−∆tv4π
(rn

i+1/2)
2Qn−1/2

i+1/2 − (rn
i−1/2)

2Qn−1/2
i−1/2

∆mi
, (19)

where vn−1/2
i is the old velocity and the second and third terms correspond to the right-hand-side

of Eq. 3. The fourth term is due to the artificial viscosity, which is needed to stabilize the numerical
evolution at discontinuities (= shocks) and to avoid the development of artificial discontinuities.
This is the von Neumann-Richtmyer approach to handling numerical hydrodynamics (e.g., [1, 9]).
The artificial viscosity should be zero wherever the flow is smooth and non-zero where there
are discontinuous changes in the state variables to damp numerical noise that will invariably
arise there. We provide the detailed form of Q in §3.1. In the momentum equation (Eq. 19),
the artivicial viscosity is time-lagged for additional stability [2]. The velocity update in Eq. 19 is
spatially centered, thus is also second-order in space.

The timestep for the velocity update ∆tv is given as the average of the previous and the current
timestep,

∆tv ≡
1
2
(∆tn−1/2 + ∆tn+1/2) , (20)

where
∆tn+1/2 ≡ tn+1 − tn . (21)

We elaborate in §3.2 on how we chose ∆tn+1/2.
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Once the new velocity at time n + 1/2 is known, the radial (spatial) coordinates are updated
according to

rn+1
i = rn

i + ∆tn+1/2vn+1/2
i . (22)

The cell center is defined so that the region between the inner edge of the cell and the cell center
contains half the mass in a cell. The discrete radial coordinate of the cell center at time n + 1 is
computed via a volume average (assuming that the density is constant across a cell):

rn+1
i+1/2 =

[
(rn+1

i )3 + (rn+1
i+1 )

3

2

]1/3

. (23)

Next, we use the updated radial coordinates to update the cell densities,

ρn+1
i+1/2 =

∆mi+1/2
4
3 π[(rn+1

i+1 )
3 − (rn+1

i )3]
. (24)

Note that the finite difference representation of the above equation for the density is spatially
centered and, hence, has a second-order truncation error in ∆m.

Finally, we update the specific internal energy. The discrete form of the energy equation (Eq. 2)
may be written as (for clarity, we drop the energy deposition from radioactive nickel εNi here, but
it is included in the code)

εn+1
i+1/2 = εn

i+1/2 −
1
2

(
Pn+1

i+1/2 + Pn
i+1/2

)
∆Vi+1/2

−
[
θ(Ln+1

i+1 − Ln+1
i ) + (1− θ)(Ln

i+1 − Ln
i )
] ∆tn+1/2

∆mi+1/2

−4πQn+1/2
i+1/2

[
1
2
(rn+1

i+1/2 + rn
i+1/2)

]2 (
vn+1/2

i+1 − vn+1/2
i

) ∆tn+1/2

∆mi+1/2
, (25)

where ∆Vi+1/2 =

(
1

ρn+1
i+1/2
− 1

ρn
i+1/2

)
.

The luminosity Ln
i is given by

Ln
i = −

[
4π(rn

i )
2]2
(

1
κ

)n

i

acλn
i

3
(Tn

i+1/2)
4 − (Tn

i−1/2)
4

∆mi
, (26)

where (
1
κ

)n

i
=

(Tn
i+1/2)

4/κn
i+1/2 + (Tn

i−1/2)
4/κn

i−1/2

(Tn
i+1/2)

4 + (Tn
i−1/2)

4 . (27)

SNEC stores the inverse opacity (1/κ) in the array inv_kappa. The � [TODO: where does the
flux limiter come from? Need reference and explanation] � flux limiter λn

i is

λn
i =

6 + 3Rn
i

6 + 3Rn
i + (Rn

i )
2 , (28)

where

Rn
i =

8π(rn
i )

2

(Tn
i+1/2)

4 + (Tn
i−1/2)

4

|(Tn
i+1/2)

4 − (Tn
i−1/2)

4|
∆mi

(
1
κ

)n

i
. (29)
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The flux limiter, inverse opacity, and luminosity are computed in subroutine luminosity (in
source file luminosity.F90) called from subroutine hydro rad (and also from subroutine hydro,
but for purely diagnostic reasons).

� [TODO: continue editing here] � Collecting together the terms of the Eq. 25, which depend
on the temperature Tn+1, one gets

εn+1
i+1/2 +

1
2

Pn+1
i+1/2∆Vi+1/2 + θ

∆tn+1/2

∆mi+1/2
(Ln+1

i+1 − Ln+1
i )

= εn
i+1/2 −

1
2

Pn
i+1/2∆Vi+1/2 − (1− θ)

∆tn+1/2

∆mi+1/2
(Ln

i+1 − Ln
i )

−4πQn+1/2
i+1/2

[
1
2
(rn+1

i+1/2 + rn
i+1/2)

]2 (
vn+1/2

i+1 − vn+1/2
i

) ∆tn+1/2

∆mi+1/2
, (30)

where εn+1
i+1/2 and Pn+1

i+1/2 depend only on Tn+1
i+1/2, while Ln+1

i+1 = Ln+1
i+1 (T

n+1
i+3/2, Tn+1

i+1/2) and Ln+1
i =

Ln+1
i (Tn+1

i+1/2, Tn+1
i−1/2). Assuming

Tn+1
i−1/2 = T∗i−1/2 + δTi−1/2 , Tn+1

i+1/2 = T∗i+1/2 + δTi+1/2 , Tn+1
i+3/2 = T∗i+3/2 + δTi+3/2 ,

and linearizing with respect to the small parameters δTi−1/2, δTi+1/2 and δTi+3/2 one can rewrite
Eq. 30 in the form

AiδTi+3/2 + BiδTi+1/2 + CiδTi−1/2 = Di , (31)

where the coefficients are defined as

Ai = θ
∆tn+1/2

∆mi+1/2

∂Ln+1
i+1

∂Tn+1
i+3/2

∣∣∣∣∣
δTi+ 3

2
→0

,

Bi =
∂εn+1

i+1/2

∂Tn+1
i+1/2

∣∣∣∣∣
δT

i+ 1
2
→0

+
1
2

∆Vi+1/2
∂Pn+1

i+1/2

∂Tn+1
i+1/2

∣∣∣∣∣
δT

i+ 1
2
→0

+ θ
∆tn+1/2

∆mi+1/2

(
∂Ln+1

i+1

∂Tn+1
i+1/2

−
∂Ln+1

i

∂Tn+1
i+1/2

) ∣∣∣∣∣
δT

i+ 1
2
→0

,

Ci = −θ
∆tn+1/2

∆mi+1/2

∂Ln+1
i

∂Tn+1
i−1/2

∣∣∣∣∣
δT

i− 1
2
→0

, (32)

and the right hand side is equal to

Di = εn
i+1/2 −

1
2

∆Vi+1/2Pn
i+1/2 − (1− θ)

∆tn+1/2

∆mi+1/2
(Ln

i+1 − Ln
i )

− 4πQn+1/2
i+1/2

[
1
2
(rn+1

i+1/2 + rn
i+1/2)

]2 (
vn+1/2

i+1 − vn+1/2
i

) ∆tn+1/2

∆mi+1/2

−
[

εn+1
i+1/2 +

1
2

∆Vi+1/2Pn+1
i+1/2 + θ

∆tn+1/2

∆mi+1/2
(Ln+1

i+1 − Ln+1
i )

] ∣∣∣∣∣
δT→0

. (33)

Calculation of the coefficients (Eq. 32) and right hand side (Eq. 33) is performed in the subrou-
tine matrix_arrays (in arrays.F90). In the current version of the code we neglect the temperature
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dependence of the opacity and flux-limiter and use the derivatives of the luminosity with respect
to temperature in the simple form

∂Ln+1
i+1

∂Tn+1
i+3/2

= −
[
4π(rn+1

i+1 )
2
]2
(

1
κ

)n

i+1

acλn+1
i+1

3
4(Tn+1

i+3/2)
3

∆mi+1
,

∂Ln+1
i+1

∂Tn+1
i+1/2

=
[
4π(rn+1

i+1 )
2
]2
(

1
κ

)n

i+1

acλn+1
i+1

3
4(Tn+1

i+1/2)
3

∆mi+1
,

∂Ln+1
i

∂Tn+1
i+1/2

= −
[
4π(rn+1

i )2
]2
(

1
κ

)n

i

acλn+1
i

3
4(Tn+1

i+1/2)
3

∆mi
,

∂Ln+1
i

∂Tn+1
i−1/2

=
[
4π(rn+1

i )2
]2
(

1
κ

)n

i

acλn+1
i

3
4(Tn+1

i−1/2)
3

∆mi
.

The derivatives of ε and P with respect to T are obtained from the equation of state.

Taking as an initial guess T∗ = Tn at every grid point, we solve the obtained linear system
(Eq. 31) for all grid points except the outer boundary one. To invert the tridiagonal matrix of
coefficients we use the lapack package. After inversion the values of T∗ are updated as T∗ →
T∗ + δT and all the process is repeated until min(δT/T∗) becomes less than the chosen tolerance
level EPSTOL (set in hydro_rad.F90). Note, that when evolving the energy equation we always
use the value of the opacity κ at the previous (n-th) time step, while the flux limiter is recalculated
at each iteration with the updated value of T∗.

As a boundary condition for the energy equation we assume that the luminosity at the surface
of the star is equal to the luminosity at the closest innermost point, Limax = Limax−1 (hardcoded in
matrix_arrays subroutine in arrays.F90). With this condition the luminosity terms in the Eq. 25
for the εn+1

imax−1/2 cancel each other and the boundary value of temperature, Timax+1/2, does not
participate in the evolution of equations, as well as εimax+1/2. This boundary condition describes
the real physical situation when the photosphere of the models is well resolved.

3.1 Artificial Viscosity

The Euler equations admit weak solutions, i.e. solutions for which the integral form of the con-
servation laws hold, but the differential form is violated, because of discontinuities in the state
variables. As a consequence, a naive finite-difference treatment of the Euler equations will lead
to the growth and eventual blow-up of oscillations near discontinuities (e.g., shocks, contact dis-
continuities, surfaces of stars etc.). The idea of von Neumann & Richtmyer [1] is to avoid such
oscillations by artificially spreading out discontinuities over multiple grid cells and thus avoiding
the development of unstable oscillations. The artificial viscosity used for this should be non-zero
only at discontinuities and zero everywhere else.

Mezzacappa & Bruenn [2] use an artificial viscosity prescription optimized for collapse. How-
ever, in SNEC, we use the simpler original von Neumann & Richtmyer form,

Q ≡
{

c2
0ρ(∂v/∂k)2 ∂v/∂k < 0

0 otherwise ,
(34)

where ∂/∂k denotes the deriviate with respect to an integer Lagrangian coordinate (some cell
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index k). The finite-difference form of this implemented in artificial viscosity.F90 is

Qn+1/2
i+1/2 =

{
c2

0ρn+1
i+1/2(v

n+1/2
i+1 − vn+1/2

i )2 if (vn+1/2
i+1 − vn+1/2

i ) < 0
0 otherwise .

(35)

We set c2
0 = 2, following [2, 6].

3.2 Timestep

The timestep used in the update of the hydrodynamic equations must not violate causality, that
is, it must be no larger than the time it takes a sound wave to travel across a grid cell. In addition
to the causality constraint, the timestep may further need to be limited to ensure stability of the
numerical implementation (see, e.g., [1, 3, 9]).

In SNEC, the timestep is determined in timestep.F90 according to the following prescription.
We first compute a local timestep for each cell i,

∆tn+1/2
i+1/2 = min

(
rn

i+1 − rn
i

|vn−1/2
i + cn

s,i+1/2|
,

rn
i+1 − rn

i

|vn−1/2
i − cn

s,i+1/2|

)
, (36)

where cs is the speed of sound obtained from the EOS. We then use the global minimum as the
new timestep,

∆tn+1/2 = CFL min({tn+1/2
i }) , (37)

where CFL is the Courant-Friedrichs-Lewy factor, which we set to 0.95 for stability.

3.3 Rosseland mean opacity

The subroutine opacity finds opacity κ in each grid point of the model from the existing tables
of the Rosseland mean opacities for different compositions, temperatures and densities of matter.
The output of the subroutine consists of the arrays kappa_table, the opacity found from the tables,
and kappa, the same opacity after taking into account the opacity floor. The values of kappa

participate in the evolution of the hydrodynamics equations, while the values of kappa_table are
used while looking for the position of the photosphere of the star, and for defining the observed
luminosity (see analysis.F90). The derivative of the opacity with respect to temperature (array
dkappadt) is outputted as well, but does not participate in the evolution of the equations in the
current version of the code.

In the high temperature regime (from log T ∼ 3.75 to log T = 8.7), we use the set of OPAL
tables of Type II with the nominal metallicity Ztab = 0.02 (equal to the solar metallicity), together
with the interpolating routine, taken from the OPAL website http://opalopacity.llnl.gov/opal.html
(contained in the file opal_opacity.F90). For the details of the generation of these tables, see
[10]. The routine, provided on the OPAL website, performs interpolation between five variables,
namely,

X , hydrogen mass fraction,
δXC , enhanced carbon mass fraction,
δXO , enhanced oxygen mass fraction,

T6 , temperature in millions of degrees Kelvin,
R = ρ/T3

6 , where ρ is the density of matter.
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In the code the four last variables are represented by xxc, xxo, t6 and R_op, respectively. The
enhanced mass fractions in i-th grid point are found as

δXi,C = max
(

0, Xi,C − ZtabXsol
C

)
,

δXi,O = max
(

0, Xi,O − ZtabXsol
O

)
,

where Xi,C and Xi,O are the total mass fractions of carbon/oxygen in the considered point, and
Xsol

C and Xsol
O are the relative mass fractions of carbon/oxygen in the solar composition, equal to

0.173285 and 0.482273, respectively (see the abundances inside the codata files). Note that we do
not use the option of smoothing of the original tabular data, having ismdata=1 in the interpolating
routine (see the explanation in opal_opacity.F90).

The interpolating routine is called in cases, in which the values of temperature and density
in the considered point lie within the range of the opacity tables. Otherwise, the opacity in each
subsequent grid point dublicates the opacity in the previous point (typically, the values of density
start to go out of the table range in very rarified outer layers of the expanding model, in this case
the described procedure just flatens the opacity in the outer region).

After the tabular value of opacity is found, we choose the maximum between this value and
the value of the opacity floor in the considered point. The opacity floor is set up at the beginning
of the simulation in problem.F90. The value of the opacity floor in i-th grid point is chosen to be
proportional to the metallicity Zi in this point. In addition we require the values of the opacity
floor in the envelope (solar metallicity Z� = 0.02) and core (Z = 1) to be equal to OFenv = 0.01
and OFcore = 0.24, respectively, so that

OFi =
OFcoreZ� −OFenv + Zi(OFenv −OFcore)

Z� − 1
. (38)

The specific chosen values of OFenv and OFcore are based on the recent calibration of the results of
the LTE code against the results of the multifrequency code, performed in [6].

In the low temperature regime (down to log T = 2.7), the OPAL opacity tables are supple-
mented by the tables presented in [11]. These tables exist for the composition mixtures with zero
enhanced carbon/oxygen mass fractions, δXi,C = 0 and δXi,O = 0. For these cases we use the val-
ues from the low temperature tables starting from their upper temperature boundary log T = 4.5.
We don’t interpolate between the tables in the overlap region (3.75 < log T < 4.5), giving the pref-
erence to the low temperature tables, because they take into account the contribution of molecular
lines, which are not included in the OPAL tables.2

For the tables with nonzero enhanced carbon and oxygen mass fractions we simply fill in the
regions, where the data is absent, by the last meaningful values from right to left (from higher to
lower densities) and then from bottom up (from higher to lower temperatures). This is done in
order to have the equal size of all tables and use the same OPAL interpolation routine (note that
due to this reason we changed the parts of the interpolation routine, where the size and structure
of the tables were encoded). The order in which the filling is performed is motivated by the fact
that the opacity generally demonstrates a stronger dependence on the temperature than on the
density in the considered region of the parameter space.

2The same low temperature table for zero hydrogen mass fraction is used in codataa and codatab files.
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Although generation of the low temperature tables, exactly supplementing the OPAL Type
II tables, is technically possible with the existing codes, it would not be very helpful from the
physical point of view. The reason is that the range of change of the carbon and oxygen mass frac-
tions in the OPAL tables is very large and relatively sparsely covered by the tables. For the high
temperature regime (mostly determined by the atomic lines) the opacity is expected to change
smoothly and the interpolation between the different tables may be reliable. For the low temper-
atures, when the opacity is mostly determined by the molecular lines, the opacity is not expected
to change smoothly between the different compositional mixtures of the OPAL tables, and one
cannot rely on the smooth interpolation between them (see [12]).

It should be noted that the opacity, calculated as described above, is expected to be system-
atically higher than the correct value (because physically we expect the opacity in carbon/oxy-
gen enhanced regions to go down with the decreasing temperature, instead of staying constant).
However, the low temperature region of the tables lies below the currently used opacity floor, and
uncertainty in the tables almost does not influence the evolution, having noticeable effect only
on the position of the photosphere in the carbon/oxygen rich regions of the star. Therefore, it
affects the transition region between plateau and the nickel part of the light curve, which cannot
be reproduced very accurately already due to the LTE assumption, adopted in the code.

3.4 Boundary Conditions

We must specify boundary conditions and some hydrodynamic/thermodynamic state variables
at both the inner and the outer boundaries of our grid. The default boundary conditions in SNEC
are the following. The user should feel free to experiment and change them according to their
need.

Inner Boundary, i=1 (quantities not specified are computed and not fixed)

Quantity Description/Notes Source File
v1 = 0 Set to vpiston only when piston is active. hydro.F90, hydro rad.F90

L1 = 0 Luminosity at the inner boundary arrays.F90

Outer Boundary, i=imax (quantities not specified are computed and not fixed)

Quantity Description/Notes Source File
Qimax = 0 Artificial viscosity artificial viscosity.F90

ρimax+1/2 = 0 Density read profile.F90, hydro.F90, hydro rad.F90

εimax+1/2 = 0 Spec. int. energy. read profile.F90, hydro.F90, hydro rad.F90

Timax+1/2 = 0 Temperature read profile.F90, hydro.F90, hydro rad.F90

Pimax+1/2 = 0 Pressure read profile.F90, hydro.F90, hydro rad.F90

Limax = Limax−1 Luminosity arrays.F90

Note that Pimax+1/2, Limax and Qimax are the only important boundary conditions, since the other
quantities at imax and imax+1/2 are never used in the evolution.

4 Heating by the radioactive decay of 56Ni
The subroutine nickel.F90 is called once in a chosen interval of time, given by the parameter

Ni_period. It is based on the work [13] and solves the transfer equation for the γ-rays in gray
approximation, assuming that the γ-ray opacity, κγ = 0.06Ye cm2 g−1, where Ye is the electron
fraction, is purely absorptive and independent of energy.
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Figure 1: Illustration to the Eqs.(39)-(44).

Consider a γ-ray, propagating along the axis z from the point A to the point B (see the scheme
in the Fig.1). The transfer equation for the energy-integrated intensity I may be written as

∂I
∂z

= η − κγρI , (39)

where ρ is the density of matter, η = XNiεradρ/4π is the local total γ-ray emissivity, XNi is the
mass fraction of 56Ni. The time dependent rate of energy release per gram of radioactive nickel,
εrad, is equal to

εrad = 3.9× 1010 exp(−t/τNi)

+6.78× 109 [exp(−t/τCo)− exp(−t/τNi)] erg g−1 s−1 , (40)

where τNi and τCo are the mean lifetimes of 56Ni and 56Co, equal to 8.8 and 113.6 days, respectively.
Introducing the optical depth along the ray

dτ = −κγρdz , (41)

and defining I′ = (4πκγ/εrad)I, one can rewrite Eq. 39 (following [13]) as

dI′

dτ
= I′ − XNi . (42)

Integrating it one can get

I′(τj+1) = I′(τj)e−(τj−τj+1) +
∫ τj

τj+1

XNi(τ)e−(t−τj+1)dt , (43)

where the point j and j + 1 are as indicated in the Fig.1 (note that τj+1 < τj). Assuming that
XNi(τ) = XNi,j is constant between these points, one can perform the integration to get

I′(τj+1) = I′(τj)e−(τj−τj+1) + XNi,j

[
1− e−(τj−τj+1)

]
. (44)

The rate at which the energy is deposited in the given grid point is equal to εradd, where the
deposition function d is found as an integral of I′ over all solid angles

d =
1

4π

∮
I′dω . (45)
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Figure 2: Geometrical scheme behind the calculations, performed in the subroutine.

Fig.2 shows the geometrical scheme, used for the calculations performed in the subroutine
(with the labeling matching the names of variables in the code). rNi is the radius of the sphere, out
of which the mass fraction of 56Ni is less than chosen minimum mass fraction, given by the local
parameter NIMIN. Although using NIMIN introduces a certain (controlable) error in the calculations,
without it the numerical integration described below would be highly inefficient for the cases,
when 56Ni is concentrated close to the center.

In order to find the deposition function di in the i-th grid point with the radial coordinate ri
we iteratively evolve Eq. 44 along a set of rays, corresponding to the different values of the polar
angle θ. For each ray we start from the outermost point of each ray, having non-negligible mass
fraction of 56Ni, finish the iterations at the point ri, and perform the angular averaging according
to Eq. 45.

In particular, for the ray, shown in Fig.2, we evolve Eq. 44 starting from the point A and
use as a boundary condition I′ = 0 at this point (no external sources of γ-rays outside the ra-
dius rNi). The distance rmax between A and ri is discretized with the constant radial increment
∆r = rmax/Nr, where Nr is the number of points per radial integral (given by the local parameter
npoints_radial_integration in the code). Note that we use a fixed amount of points Nr per
length rmax instead of the fixed increment ∆r, because the rmax will strongly vary for the differ-
ent grid points, and taking into account that the envelope of the exploded star will continue to
expand, it is difficult to choose a unique suitable ∆r.

The following geometrical relations hold between the different distances in the Fig.2

rmax = −ri cos θ +
√

r2
i cos2 θ − (r2

i − r2
Ni)

r2
j = r2

i + r2
x + 2rirx cos θ . (46)

Variables rho_j, kappa_gamma_j and comp_Ni_j in the code stand for the values of ρ, κγ and XNi,
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respectively, at the distance rj from the center (found by linear interpolation in radial coordinate,
using the map_map routine). Note, that the density in the excised region of the profile, r < r1, is
assumed to be zero, because the compact remnant neutron star will occupy only very small central
region of this space.

Having found the value of I′ at the i-th grid point due to the ray defined by the angle θ, I′i (θ),
we need to integrate it over the solid angle dω = sin θdθdφ, where φ is the azimuthal angle. In
case when ri < rNi, the angular integration is performed between θ = π and θ = 0, while in case
when ri > rNi, the integration is performed between θ = π and θ = θmin,i (th_min(i) in the code),
obtained from the relation

cos θmin,i = −

√
r2

i − r2
Ni

ri
. (47)

Integration is performed using the simple rectangle method with the angular increment ∆θ =
(π − θmin,i)/Nθ , where Nθ is the number of points per angular integral (given by local parameter
npoints_angular_integration in the routine).

Taking into account the azimuthal symmetry, the deposition function in the i-th grid point,
being equal to the angular average of I′, is given by

di =
1
2 ∑

θ

I′i (θ) sin θ∆θ , (48)

θ = π, π − ∆θ, ..., θmin,i + ∆θ .

Multiplied on εrad, this value gives the amount of energy per unit mass per unit time, deposited
in the i-th grid point (Ni_heating(i) in the code). The subroute also calculates the total amount
of energy per second deposited by γ-rays (Ni_total_luminosity in the code).

5 Equations of State

An equation of state (EOS) is crucial for closing the system of hydrodynamics equations. At the
moment SNEC provides a choice between two EOS, but we plan to add more options in the future.
The top-level eos routine, located in eos_switch.F90, switches between the EOS and calles lower-
level routines, located in eos_content.F90. Some EOS parameters are set in problem.F90.

The EOS is selected by the user with the eoskey variable that is set in the parameters file. In
the following sections we summarize the EOS options.

5.1 Ideal single-particle Boltzmann Gas EOS (eoskey = 1)

In this case pressure P, specific internal energy ε and speed of sound cs are given by simple
expressions

P = kBNAρT , ε =
kBNAT
Γ− 1

, c2
s = ΓkBNAT , (49)

where NA is the Avogadro’s constant and Γ is the ratio of specific heats Γ ≡ cp/cV chosen to be 1.4
in problem.F90.

This EOS is not recommended for the light curve generation and its main purpose is to demon-
strate the ability of the hydro.F90 routine to pass the Sedov blastwave test. For that purpose one
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may use the profile files sedov.short and sedov.iso.dat (in profile folder), corresponding to a
sphere of radius R = 2 cm and constant density ρ0 = 1 g cm−3, consisting of only neutrons. Pa-
rameter file parameters_sedov is tuned for the explosion of this model with energy 1 erg (without
including radiation into the scheme, with gravity turned off).

Analytical solution of this problem with the same setup is generated by script sedov.py, based
on the work of James R. Kamm [14]. The script outputs density as a function of radial coordinate,
which can be compared to the SNEC’s rho.xg and radius.xg output files.

When performing this Sedov blastwave test one may notice that the shock radius given by
SNEC is slightly larger than the analytic solution. This reflects the imperfection of the bomb setup
and can be seen in the last column of the conservation.dat output file, giving the total energy of
the system minus its initial energy as a function of time. One can see that for the chosen param-
eters of thermal bomb the energy, actually injected into the system, is few percent larger than the
nominal explosion energy of 1 erg. Decreasing the duration time of the thermal bomb will make
the discrepancy worse. Changing the parameter final_energy from 1 erg to 0.975 erg, one can
reproduce the analytic solution more precisely and see from conservation.dat that the actual
energy given to the system in this case is very close to 1 erg. This demonstrates that the current
setup of the thermal bomb works with the accuracy of a few percent.

5.2 Paczynski EOS (eoskey = 2)

This is a simplified analytic EOS for a mixture of ions, photons, and semi-degenerate/semi-
relativistic electrons. It is based on the work of Paczynski [15], with the addition of corrections
due to the partial ionization. To calculate these corrections we closely follow paragraph 9.18 of
[16].

The total pressure is calculated as a sum of contributions from the ions, electrons and radiation

P = Pion + Pe + Prad . (50)

The ion part is equal to
Pion = NρkBT , (51)

where
N =

1
mp

∑
k

Xk

Ak
, (52)

is the number of heavy particles per unit mass, mp is the mass of proton, Ak is the mass number
of the k-th element. The radiation part of the pressure is equal to

Prad =
aT4

3
, (53)

and the electron part is given by the expressions

Pe =
√

P2
end + P2

ed , Ped =
(

P−2
ednr + P−2

edr

)−1/2
,

Pend = ȳNρkBT , Pednr = 9.91× 1012(Yeρ)5/3 , Pedr = 1.231× 1015(Yeρ)4/3 . (54)

Here Ye is the electron fraction, and ȳ is the mean degree of ionization, equal to the ratio between
the number of free ionization electrons and the total number of atoms and ions

ȳ = ∑
k

νk

(
∑

s
syk

s

)
, (55)
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where νk is the number abundance of k-th element and yk
s is the degree of s-th ionization of the k-th

element. Pend and Ped denote the pressure of a non-degenerate and degenerate electron gas, re-
spectively. Pednr and Pedr correspond to the degenerate non-relativistic and degenerate relativistic
cases.

Total specific internal energy contains contributions from ions, electrons and radiation, includ-
ing the ionization correction as follows

ε =
3
2

NkBT +
1

f − 1
Pe

ρ
+

aT4

ρ
+ N

{
∑

k
νk

[
∑

s
yk

s

(
s

∑
m=1

χk
m−1

)]}
, (56)

where f is given by

f =
d log Ped

d log ρ
=

5
3

(
Ped

Pednr

)2

+
4
3

(
Ped

Pedr

)2

. (57)

The purpose of f is to provide correct values of the numerical prefactor in the case of degenerate
and non-degenerate electron gas.

The following assumptions are adopted:

• We assume complete ionization when degenerate electron pressures are important. This is
seen from the expressions for Pednr and Pedr, which do not depend on the degree of ion-
ization ȳ. Effects of partial ionization are taken into account only for the non-degenerate
electron gas. Stellar models, which we use to generate the light curves, typically have de-
generate regions close to the center, but after explosion these regions very quickly become
non-degenerate. Thus, possible inaccuracy of the current assumption may influence only
the very onset of the explosion, if at all.

As a consequence of this assumption, we use the Saha equations appropriate for the non-
degenerate limit when looking for the derivatives (∂E/∂T)ρ, (∂P/∂T)ρ and (∂P/∂ρ)T below.

• Following [16], we assume that for a given density and temperature each element undergoes
transition only between two neighboring ionization states, say, r− 1-th and r-th, so that

yk
r−1 ≈ 1− yk

r , dyk
r−1 ≈ −dyk

r , (58)

and
dȳ = ∑

k
νkdyk

r . (59)

Note, that we don’t use the assumption that only one element at a time goes through the
change of the ionization state, but consider contributions from all the elements.

Using these two assumptions, one can get the differentials for the pressure and energy as

dP =

[
NkBT +

∂Pe

∂ρ

]
dρ +

Pion

T
dT +

4aT3

3
dT +

P2
end

PeT
dT +

P2
end

Peȳ ∑
k

νkdyk
r , (60)

dε =
3
2

NkBdT + N ∑
k

νkχk
r−1dyk

r +
4aT3

ρ
dT − aT4

ρ2 dρ

+
∂

∂ρ

(
1

f − 1
Pe

ρ

)
dρ +

1
f − 1

P2
end

PeρT
dT +

1
f − 1

P2
end

Peρȳ ∑
k

νkdyk
r . (61)
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Fraction of atoms of the k-th element in the r-th ionization state may be obtained from the Saha
equation, written in the form

yk
r

1− yk
r

ȳNρ =
2gk,r

gk,r−1

(2πm)3/2

h3 (kBT)3/2e−
χk

r−1
kBT . (62)

Taking differential of both sides of Eq. 62, one obtains

dyk
r

yk
r(1− yk

r)
+

dȳ
ȳ

= −dρ

ρ
+

[
3
2

1
T
+

χk
r−1

kBT2

]
dT . (63)

Multiplying both sides of Eq. 63 on νk and summarizing across the elements, one can get

∑
k

νkdyk
r

[
1 +

Σ1

ȳ

]
= −dρ

ρ
Σ1 +

3
2

dT
T

Σ1 +
Σ2

kBT2 dT , (64)

where
Σ1 = ∑

k
νkyk

r(1− yk
r) , Σ2 = ∑

k
νkχk

r−1yk
r(1− yk

r) . (65)

Multiplying both sides of Eq. 63 on νkχk
r−1 and summarizing across the elements, one can get

∑
k

νkχk
r−1dyk

r = −
Σ2ȳ

ȳ + Σ1

dρ

ρ
+

3
2

Σ2ȳ
ȳ + Σ1

dT
T
− Σ2

2
ȳ + Σ1

1
kBT2 dT +

Σ3

kBT2 dT , (66)

where
Σ3 = ∑

k
νk(χ

k
r−1)

2yk
r(1− yk

r) . (67)

Substituting Eqs. 64 and 66 in Eq. 60, one finally obtains(
∂E
∂T

)
ρ

=
3
2

NkB +
4aT3

ρ
+

1
f − 1

P2
end

PeρT

[
1 +

1
Σ1 + ȳ

(
3
2

Σ1 +
Σ2

kBT

)]
+

N
T

[
Σ2

Σ1 + ȳ

(
3
2

ȳ− Σ2

kBT

)
+

Σ3

kBT

]
, (68)(

∂P
∂T

)
ρ

= NkBρ +
4aT3

3
+

P2
end

PeT

[
1 +

1
Σ1 + ȳ

(
3
2

Σ1 +
Σ2

kBT

)]
, (69)

(
∂P
∂ρ

)
T

= NkBT −
P2

end
Peρ

Σ1

Σ1 + ȳ
+

1
Pe

(
P2

end
ρ

+ f
P2

ed
ρ

)
. (70)

The speed of sound is found as

c2
s =

Γ1P
ρ

, (71)

with the adiabatic exponent Γ1 constructed from the above quantities as

Γ1 =
χ2

TP
cVρT

+ χρ , (72)

where

χρ =
ρ

P

(
∂P
∂ρ

)
T

, χT =
T
P

(
∂P
∂T

)
ρ

, cV =

(
∂E
∂T

)
ρ

. (73)

21



6 Saha Equations

The subroutine simple_saha.F90 solves the Saha-Boltzmann equations (in the non-degenerate
limit), applicable for the description of the recombination wave propagating in the low-density
envelope of the expanding star. The calculations are based on the work of Zaghloul et al. [17]. The
routine finds the fractions of atoms in different ionization states for a certain number of elements
from the composition profile (given by the parameter saha_ncomps), other elements are assumed
to be fully ionized.

The equations below describe one element with the number density of the heavy particles nk
(denoted as n_k in the code)

nk =
ρXk

mp Ak
, (74)

where ρ is the density, Xk is the mass fraction of the element at the considered point, mp is the
mass of proton, Ak is the mass number of the element.

In this case, the Saha-Boltzmann equations have the form

ns+1ne

ns
= 2

gs+1

gs

[
2πmekBT

h2

]
exp

(
− χs

kBT

)
, s = 1, 2, ..., Z , (75)

where ns is the number density of the atoms in the s-th ionization state3, gs is the statistical weigth
of the s-th state, me is the electron’s rest mass, χs is the ionization energy for the ionization process
s → (s + 1), ne is the electron number density, Z is the atomic number of the considered element
(not to be confused with the metallicity Z), h is Planck’s constant and kB is Boltzmann’s constant.
Please, note that for brevity we omit the element index k of the quantities ns, ne, gs, χs and Z.

Together with the condition of electro-neutrality

Z+1

∑
s=2

(s− 1)ns = ne , (76)

and conservation of heavy nuclei

Z+1

∑
s=1

ns = nk = constant , (77)

these equations constitute a closed system of nonlinear algebraic equations.

Denoting the fractions of the atoms in the s-th ionization state with ys = ns/nk and introducing
the average charge Z̄ = ne/nk one can rewrite the Saha-Boltzmann equations, as well as the

3Note, that in the original work of Zaghloul et al. (2000) the neutral state of the atom has index 0, while in this
description the neutral state has index 1, in order to follow the indexing of the subroutine, where all arrays start from
the index 1.
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conditions of electro-neutrality and conservation of heavy nuclei in the following form

Z+1

∑
s=1

ys = 1 , (78)

Z+1

∑
s=2

(s− 1)ys = Z̄ , (79)

ys+1Z̄nk

ys
= 2

gs+1

gs

[
2πmekBT

h2

]3/2

exp
(
− χs

kBT

)
= fs , (80)

s = 1, 2, ...Z .

From the last equation the reccurence relation follows as

ys+1 = ys
fs

Z̄nk
. (81)

The ionization energy and statistical weight are returned by the functions ionpot and stat weight,
respectively, located in saha tables.F90. These functions are taken from the Timmes EOS with

Saha ionization (see http://cococubed.asu.edu/code_pages/eos_ionize.shtml), and distributed
with SNEC by permission of Frank Timmes (for reference, see [18, 19]).

The subroutine simple_saha.F90 finds the factors fs according to the Eq. 80. After that, it finds
the indices of the lowest and highest ionization states with the non-negligible number densities
(smin and smax here, min_state and max_state in the code), based on the value of fs/(Z̄nk) and
some chosen tolerance level (zavtol in the code). For example, if fs′ > zavtol−1 the subroutine
does not solve for the s′-th ionization state, assuming ys = 0 for s = 1, ..., s′. Accordingly, if
fs′ < zavtol the subroutine does not solve for the (s′ + 1)-th ionization state, assuming ys = 0 for
s = s′ + 1, ..., Z + 1. This helps avoid numerical overflows and reduces the computational cost of
the calculations.

From the Eqs. 81 and 79 one gets the fraction of atoms in the lowest considered state as

ysmin = Z̄

[
smin − 1 +

smax−1

∑
s=smin

(
s

s

∏
j=smin

f j

Z̄nk

)]−1

. (82)

Combining Eqs. 82, 81 and 78, one gets the following transcendental equation for Z̄

F(Z̄) ≡ 1− Z̄

[
smin − 1 +

smax−1

∑
s=smin

(
s

s

∏
j=smin

f j

Z̄nk

)]−1 [
1 +

smax−1

∑
s=smin

(
s

∏
j=smin

f j

Z̄nk

)]
. (83)

In the limit smin = 1, smax = Z + 1 this equation coincides with the Eq.(9) of [17].

In the cases when more than one ionization state has non-negligible number density, Eq. 83 is
solved iteratively using the Newthon-Raphson method. The derivative F′(Z̄), needed in this case,
can be written as

F′(Z̄) =
{

Σ2 − [1 + Σ0]
[
1 + Σ3(smin − 1 + Σ1)

−1
]}

(smin − 1 + Σ1)
−1 , (84)
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where the following notations are adopted (with the parallel notations in the code)

Σ0 =
smax−1

∑
s=smin

(
s

∏
j=smin

f j

Z̄nk

)
,

Σ1 =
smax−1

∑
s=smin

(
s

s

∏
j=smin

f j

Z̄nk

)
,

Σ2 =
smax−1

∑
s=smin

(
(s− smin + 1)

s

∏
j=smin

f j

Z̄nk

)
,

Σ3 =
smax−1

∑
s=smin

(
s(s− smin + 1)

s

∏
j=smin

f j

Z̄nk

)
.

The found value of Z̄ is used to calculate the ionization fractions according to the Eqs. 82 and 81.

The electron number density due to the considered element is found as ne = Z̄nk (total electron
density is found as a sum of electron densities for all elements).

7 Analysis

The subroutine analysis (in analysis.F90) is responsible for tracking position of the photo-
sphere and calculating the bolometric luminosity, the main output of the code. Observed bolomet-
ric luminosity (lum_observed in the code) is calculated as suggested in [20] and consists of two
parts, the luminosity at the photoshere and the luminosity due to the absorption of γ-rays from
56Ni above the photosphere

Lobs = Lphoto +
∫ M

mphoto

Sdep(m)dm . (85)

Here mphoto is the mass coordinate of the photosphere, M is the total mass of the star, Sdep is the
energy per gram per second deposited by γ-rays. The location of the photosphere is defined by
the optical depth τ = 2/3, and Lphoto is found from the Eq. 4 at this point.

Among the quantities, useful for analysis and comparison of the simulations with previously
done analytical work, SNEC calculates the position of the luminosity shell, characteristic diffusion
and expansion times, as well as the internal energy of the shells. The idea of treating the expanding
envelope of a supernova as a series of successive shells has been widely used in the theoretical
studies, in particular, see [21] and [22]. Position of the luminosity shell is defined by the criteria
τ ≈ c/v, given by the equality of the characteristic diffusion timescale

tdiff ≈
κ

c
ρ∆r2 (86)

and expansion timescale

texp ≈
∆r
∆v

(87)

of a shell, where ∆r is the shell’s width and ∆v is the difference between the velocities of its
boundaries.
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Having the bolometric luminosity and radius of the photosphere Rph, SNEC calculates the
effective black body temperature as (L/4πσR2

ph)
1/4, where σ is the Stefan-Boltzmann constant.

Following arguments of [23], we choose the effective temperature to be

Teff = max


(

L
4πσR2

ph

)1/4

, 5000

 K . (88)

With this temperature we find the absolute magnitudes of a considered model in 11 different ob-
served wavelength bands, using a table of bolometric corrections BolCorr.dat (see [24]). Together
with time and Teff they are saved in the output file magnitudes.dat. Here we need to make two
important remarks. First, we cannot apply the above approach to the entire light curve, because
at some point the whole ejecta becomes optically thin and the luminosity is dominated by the
contribution of 56Ni. For that reason the code finds the moment of time, when the luminosity
contribution due to 56Ni above the photosphere amounts to more than 5% of the total luminosity
(arbitrarily chosen criteria), and we cannot trust the black body approach anymore. Secondly, it
is known from the literature that in the real SN the U and B-bands of the light curves cannot be
adequately reproduced by the one-temperature code, because already starting from a few tens of
days these bands are strongly influenced by the iron group line blanketing.
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